P (MeNCH₂CH₂)₃N: An Efficient Desulfurizing Reagent

Zhengkun Yu and John G. Verkade

Department of Chemistry, Iowa State University, Ames, IA 50011-3111

Received 21 June 1999; revised 16 August 1999

ABSTRACT: The nonionic superbase P(MeNCH₂) *CH*2*)*3*N (***A***) efficiently desulfurizes trisulfides to disulfides and monosulfides, disulfides to monosulfides,* and propylene sulfide to propene. $S = P(MeNCH,$ $CH₂$ λ ^{*N*} (**B***)* was formed as the sulfur acceptor. *P*(*NMe*₂)₃ *was a much poorer desulfurizing agent than* **A** *under the same reaction conditions. Thiocyanates and triphenylphosphine sulfide were also desulfurized with* **A***, but N-(phenylthio)phthalimide formed [***A***-SPh]*⁺ *phthalimide in quantitative yield.* © 1999 John Wiley & Sons, Inc. Heteroatom Chem 10:544–547, 1999

INTRODUCTION

The desulfurization of organosulfur compounds with trivalent organophosphorus reagents has been studied for more than four decades. For example, one or more of the reagents triphenylphosphine [1– 5], trisdimethylaminophosphine [4,6–8], trisdiethylaminophosphine [7–10], triethylphosphite [1], trimorpholinophosphine [4,7] and tributylphosphine [11,12] have been employed to convert trisulfides to the corresponding disulfides or monosulfides, *b*-keto sulfides to ketones, and sulfenimides to amines in moderate yields. Trisdiethylylaminophosphine usually removes sulfur more efficiently than trisdimethylaminophosphine from disulfides to form monosulfides under refluxing conditions (e.g., \geq 80° C) [10]. Trialkyl phosphines can be used to remove sulfur from thioethers [13], thiols [14], and organometallic dithiocarboxylates [15], trisdiethylaminophosphine effects reaction 1; triphenylphosphite effects reaction 2 [16], and very recently thiol groups were reductively eliminated photochemically from L-cysteine derivatives in the presence of triethylphosphite and triethylboron [17]. Polymeric aminophosphines have also shown moderate to good efficiencies in the desulfurization of organic sulfides [18].

In the course of our ongoing investigations on new synthetic applications of the exceedingly strong nonionic base and catalyst **A** first reported from our laboratories [19–21], we found that **B** could be formed from **A** in the presence of sulfur [22]. Recently, we found

Correspondence to: John G. Verkade.

Contract Grant Sponsor: University Coal Research Program, Pittsburgh Energy Technology Center of the US DOE.

Dedicated to Alfred Schmidpeter on the occasion of his 70th birthday.

^{© 1999} John Wiley & Sons, Inc. CCC 1042-7163/99/070544-04

that **B** could be desulfurized with excess sodium in refluxing toluene or in tetradecane at 160° C. These results suggested a potential application of **A** in desulfurizing organosulfur compounds in a cyclic process, since **A** can be recycled as shown in Equation 3. Here we report desulfurizations with **A** under mild conditions.

Using 1.0 equiv of **A,** trisulfides were desulfurized primarily to disulfides with monosulfides as minor products at room temperature, and **B** was formed as the only other product (entries 1–3, Table 1). With more than 2.0 equiv of **A,** benzyl trisulfide was desulfurized to benzyl monosulfide via benzyl disulfide (entry 5, Table 1). Disulfides such as propyl, butyl, methyl benzyl, and benzyl disulfides were ef-

ficiently desulfurized to monosulfides at room temperature or at 40° C (entries 7, 12, 16, and 17, Table 1). Increasing the steric hindrance of the disulfide decidedly decreased the desulfurization rate (entries 8 and 14, Table 1). Although $(Et_2N)_3P$ was effective for desulfurizing trisulfides to disulfides, disulfides to monosulfides, and some activated monosulfides to sulfur-free compounds [7–10], it showed poorer desulfurizing efficiency than **A** (Table 1, entries 4, 9, 15, and 17). Under the same reaction conditions (entries 6, 10, 11, and 13, Table 1), $(Me_2N)_3P$ showed much poorer desulfurization efficiency. Using excess $(Me_2N)_3P$, benzyl trisulfide was desulfurized to benzyl disulfide (39.6%) and benzyl monosulfide (42.9%) in THF at room temperature within 25.5 hours, but at the same temperature it was quantitatively desulfurized by **A** to benzyl monosulfide within 3 hours (entries 5 and 6, Table 1). For disulfides, $(Me_2N)_3P$ led to poor desulfurization efficiencies (entries 10, 11, and 13, Table 1). Phenyl disulfide could not be efficiently desulfurized at room temperature by **A,** and raising the temperature led to the formation of **C** (entry 19, Table 1). Analogs of **C** have

Entry	Sulfide	Equiv of A^b	Solvent	Temp/Time (°C/h)	Product(s) \degree (% yield)
1	PrS_3Pr	1.0	THF	rt/4	$PrS_2Pr(95.0)$, PrSPr (2.2)
2	BuS ₃ Bu	1.0	THF	rt/4	BuS ₂ Bu (95.0), BuSBu (2.0)
3	BnS ₃ Bn	1.0	THF	rt/3	BnS ₂ Bn (74.0), BnSBn (12.4)
4	BnS_3Bn	~1.1 ^d	C_6H_6	rt/3	BnS ₂ Bn (94.0) [7]
5	BnS ₃ Bn	2.2	THF	rt/1.5	BnS ₂ Bn (94.0), BnSBn (2.8)
				rt/3	BnSBn (>99.0)
6	BnS_3Bn	2.2^e	THF	rt/3	BnS_2Bn (7.7), BnSBn (36.7)
				rt/25	BnS ₂ Bn (39.6), BnSBn (42.9)
7	$PrS_{2}Pr$	1.1	C_6H_6	40/26	PrSPr (100)
8	PrS ₂ Pr	1.1	toluene	110/17	PrSiPr (30.0)
				110/64	PrSPr (100)
9	PrS ₂ Pr	1.2 ^d	C_6H_6	80/48	PrSiPr (<50) [10]
10	$PrS_{2}Pr$	1.1 ^e	C_6H_6	40/26	PrSPr (11.0)
11	$PrS_{2}Pr$	2.2^e	C_6H_6	40/26	PrSPr (38.8)
12	BuS ₂ Bu	1.1	C_6H_6	40/26	BuSBu (100)
13	BuS ₂ Bu	1.1 ^e	C_6H_6	40/26	BuSBu (10.4)
14	'BuS ₂ 'Bu	1.1	toluene	110/17	^t BuS ^t Bu (10.7)
				110/65	^t BuS ^t Bu (45.0)
15	^t BuS ₂ ^t Bu	>100 ^d		80/48	^t BuS ^t Bu (1.0) [10]
16	BnS ₂ Me	1.0	THF	rt/19	BnSMe (97.0)
17	BnS ₂ Bn	1.0	THF	rt/1	BnSBn (98.0)
18	BnS ₂ Bn	1.2 ^d	C_6H_6	80/4	BnSBn (92.0) [10]
19	PhS ₂ Ph	1.0	THF	rt/48	PhSPh (<5.0)
		1.2	tetradecane	160/18	PhSPh (7.0), C (90.0) ^t
20	propylene sulfide	1.0	C_6H_6	rt/19 ^g	propylene (>95.0)

TABLE 1 Desulfurization of Trisulfides, Disulfides, and Monosulfides using **A**^a

^aReaction conditions: 0.1 MPa, sulfide (1.0 mmol), solvent (5 mL).

A was used in all cases except where indicated.

^cThe products were analyzed by GC.

 ${}^dP(NEt_2)_3$ used as the base instead of A.

 $eP(NMe₂)$ ₃ used as the base instead of A.

f Determined by 31P NMR spectroscopy.

^gThe reaction time was not optimized.

Entry	Substrate	Eauiv of A	Solvent	Temp/Time (°C/h)	Product(s) ^b (% yield)
	EtSCN	1.0	THF	40/10	EtCN (95.0)
2	PhCH ₂ SCN	1.0	CH₃CN	35/14	PhCH ₂ CN (95.0)
3	N-(phenylthio)phthalimide	1.0	pentane	rt/14	E (99.0) ^c
4	$Ph2P = S$	1.1	toluene	110/20	Ph ₃ P (60.0) ^d
5	$Bu_3P = S$	1.1	toluene	110/20	Bu_3P (<5.0)
6	$(Me_2N)_3P = S$	1.1	toluene	110/20	$(Me_2N)_3P$ (<5.0) ^d

TABLE 2 Desulfurization of other Sulfur Containing Substrates using **A**^a

^aReaction conditions: 0.1 MPa, substrate (1.0 mmol), solvent (5 mL).

 b The products were analyzed by GC.

^cProduct **E** was characterized by 1H, 13C, and 31P NMR and elemental analysis.

^dThe yield was obtained by ³¹P NMR integrations.

been observed in desulfurizations using trialkylaminophosphines [10]. The 31P NMR spectrum of the reaction mixture of phenyl disulfide with **A** in tetradecane at 160°C revealed a major peak at 45.1 ppm in addition to a small peak at 76.3 ppm (assigned to **B**). Acidifying the same reaction mixture with 1N HCl led to the

formation of phenylthiol, which was detected by GC–MS analysis. Interestingly, propylene sulfide in the presence of **A** lost sulfur to give propene in high yield at room temperature (entry 20, Table 1).

Thiocyanates were desulfurized by **A** to their corresponding cyanides (entries 1, 2, Table 2). In the reaction of ethyl thiocyanate with **A** at room temperature, \mathbf{D} ($\delta^{31}\mathbf{P} = 50.7$ ppm) and **B** were formed in roughly equivalent amounts according to 31P NMR integration, but raising the temperature decomposed **D** to ethyl cyanide and **B** presumably via nucleophilic attack of cyanide anion at the Et-S bond. **A** and N-(phenylthio)phtahalimide reacted cleanly at room temperature forming **E** quantitatively [23]. Analogs of **E** wherein the cation is $ArSP(NMe₂)$ ⁺ (Ar = Ph or p -MeC₆H₄) were reported (on the basis of transient ³¹P chemical shifts at ca. -60 ppm) in the desulfurization of the corresponding thioaryl phthalimides [24]. Triphenylphosphine sulfide was desulfurized in moderate yield by **A** (60%, entry 4, Table 2) indicating that **A** is the stronger desulfurizing reagent. However, neither $Bu_3P = S$ nor (Me_2N) ₃P=S was desulfurized by A under conditions employed herein.

General Procedure for Desulfurization with **A**

Under argon, 1.0 mmol of substrate was added to a solution of **A** in the solvent and the reaction was carried out under the conditions stated in Tables 1 and 2. The reaction mixtures were subjected to GC, GC– MS, or ³¹P NMR analyses.

REFERENCES

- [1] Dittmer, D. C.; Kotin, S. M. J Org Chem 1967, 32, 2009.
- [2] Sato, T.; Hino, T. Tetrahedron 1976, 32, 507.
- [3] Middleton, D. L.; Samsel, E. G.; Wiegand, G. H. Phosphorus and Sulfur 1979, 7, 339.
- [4] Harpp, D. N.; Smith, R. A. J Am Chem Soc 1982, 104, 6045.
- [5] Rastetter, W. H.; Spero, D. M.; Adams, J. J Org Chem 1982, 47, 2785.
- [6] Harpp, D. N.; Orwig, B. A. Tetrahedron Lett 1970, 31, 2691.
- [7] Harpp, D. N.; Ash, D. K.; Smith, R. A. J Org Chem 1980, 45, 5155.
- [8] Harpp, D. N.; Vines, S. M. J Org Chem 1974, 39, 647.
- [9] Harpp, D. N.; Gleason, J. G. Tetrahedron Lett 1969, 19, 1447.
- [10] Harrp, D. N.; Gleason, J. G. J. Am. Chem. Soc. 1971, 93, 2437.
- [11] Field, L. D.; Wilkinson, M. P. Tetrahedron Lett 1997, 38, 2779.
- [12] Brandt, P. F.; Rauchfuss, T. B. J Am Chem Soc 1992, 114, 1926.
- [13] Cadogan, J. I. G. Organophosphorus Reagents in Organic Synthesis; Academic Press: New York, 1979.
- [14] Salim, A.; Tillet, J. G. Phosphorus, Sulfur Silicon Relat Elem 1991, 60, 215.
- [15] Touchard, D.; Fillaut, J. L.; Dixneuf, P. H.; Toupet, L. J Organomet Chem 1986, 317, 291.
- [16] Holand, S.; Ricard, L.; Mathey, F. J Org Chem 1991, 56, 4031.
- [17] Gonzales, A.; Valencia, G. Tetrahedron: Asymmetry 1998, 9, 2761.
- [18] Harpp, D. N.; Adams, J.; Gleason, J. G.; Mullins, D.; Steliou, K. Tetrahedron Lett 1978, 42, 3989.
- [19] Schmidt, H.; Lensink, C.; Xi, S. K.; Verkade, J. G. Z Anorg Allg Chem 1989, 75, 578.
- [20] Verkade, J. G. Coord Chem Rev 1994, 137, 233.
- [21] D'Sa, B. A.; Kisanga, P.; Verkade, J. G. J Org Chem 1998, 63, 3961.
- [22] Tang, J. S.; Verkade, J. G. J Am Chem Soc 1993, 115, 1660.
- [23] Compound **E,** a yellow crystalline solid, was obtained

by evaporating the solvent from the reaction mixture. ¹H NMR (CDCl₃): δ7.83, 7.67, 7.62, 7.43, 7.34, and 7.23 (1:1:2:3:1:1 H, m each, 9C*H* aromatic protons), 2.98 and 2.94 (6H, t each, $3CH_2$), 2.76 (6H, t, $3CH_2$), 2.73 (9H, d, 3CH₃). ¹³C NMR (CD₃CN): δ 174.9 (C = O), 135.8, 135.7, 131.4, 131.2, 131.1, 130.8, 130.7, 130.7, 129.6, 127.3, 51.78, 50.54(d), 37.65(d). 31P NMR: δ 44.3 ppm. Anal. calcd. for C₁₄H₉NO₂SP (255.3): C, 65.87; H, 3.55; N, 5.49. Found: C, 65.42; H, 3.40; N, 5.30.

[24] Harpp, D. N.; Orwig, B. A. Tetrahedron Lett 1970, 31, 2691.